Specific Objectives of course:

The aim of this course is to introduce the students to metric spaces and topological spaces. After completion of this course, they would be familiar with separation axioms, compactness and completeness. They would be able to determine whether a function defined on a metric or topological space is continuous or not and what homeomorphisms are.

Course Outline:

Topological spaces: Examples; open and closed subsets, metric spaces, neighbourhoods. Examples. Limit points and accumulation points. Interior, closure, dense subsets. Constructing new topological spaces: Cartesian products, induced topology and quotient topology. Continuous maps, open and closed maps, homeomorphisms. Examples: R,  RxR,  S^1,  S^2,  torus,  cylinder. Cauchy sequences, complete metric spaces. Separation axioms. Compact spaces. Properties. Power of Compactness. Image of a compact set through a continuous map. Compactness and completeness of metric spaces.
Connected spaces, connected components. Properties. Image of a connected set through a continuous map. Path-connectedness.